DOCXO3628AW-100MHz-A-V

2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 USA TEL: 1-281-870-8822 EMAIL: Sales@DynamicEng.com

Features and Benefits

Frequency range: 100MHz Supply voltage: 5.0V Steady current: 370mA Max Output waveform: Sinewave

Frequency stability vs. operating temperature: ±0.3ppb

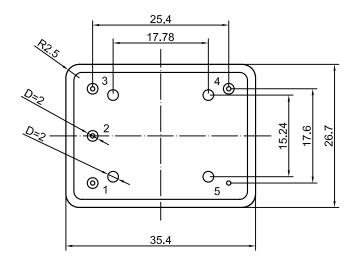
Aging: ±0.05ppm per year

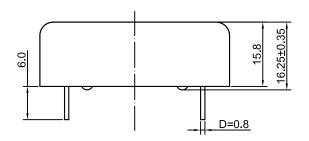
Operating temperature: -30°C to +70°C

Size: 35.4x26.7x15.8mm

Typical Applications

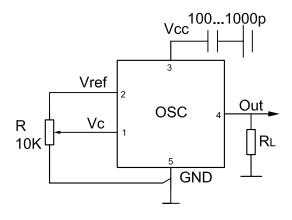
Portable Wireless Communications Mobile Test equipment Synthesizers Battery Powered Application


Description


DOCXO3628AW-100MHz-A-V offers high frequency stability, low long-term aging and low phase noise, all in a compact package to suit the different communication needs.

Mechanical Drawing & Pin Connections

Drawing No:


MD140079-2

Pin	Signal
1	Electrical tuning
2	Reference voltage
3	+V Supply
4	RF OUT
5	GND

Unit in mm 1mm = 0.0394 inches

Dynamic Engineers Inc.

2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 USA TEL: 1-281-870-8822 EMAIL: Sales@DynamicEng.com

DOCXO3628AW-100MHz-A-V Š[¸Á[¸^¦Á@ @Á cœà 尋恋 Á[¸Á @æ ^贳[ā^ÁJ ÔÝUÁ

Specifications

Vref Vcc (f _L -f)/f (f-f)/f Vc	f _{SH} =f ₀ ±(n*f ₀ /5) n=1,2,3 V _{CC} =5.0V at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min V _C =0 V V _C =V _C 0 V _C =V _C 0	+7.0 45 4.1 4.75 900 +0.4	Typ. 100 Sinew 50 4.2 5.0	-30 -55 -40 4.3 5.25 1300 370 300	Unit MHz dBm dBc ohm dBc V V mA mA sec	Note
Vref Vcc (f _L -f)/f (f-f)/f (f _H -f)/f	n=1,2,3 V _{CC} =5.0V at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min VC=0 V VC=VC0	4.1 4.75 900 +0.4	50 4.2 5.0	-30 -55 -40 4.3 5.25 1300 370 300	dBm dBc ohm dBc V V W mA mA sec	
Vcc (f _L -f)/f (f-f)/f (f _H -f)/f	n=1,2,3 V _{CC} =5.0V at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min VC=0 V VC=VC0	4.1 4.75 900 +0.4	4.2 5.0	-30 -55 -40 4.3 5.25 1300 370 300	dBc ohm dBc V V MA MA sec ppm	
Vcc (f _L -f)/f (f-f)/f (f _H -f)/f	n=1,2,3 V _{CC} =5.0V at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min VC=0 V VC=VC0	4.1 4.75 900 +0.4	4.2 5.0	-30 -55 -40 4.3 5.25 1300 370 300	dBc ohm dBc V V MA MA sec ppm	
Vcc (f _L -f)/f (f-f)/f (f _H -f)/f	n=1,2,3 V _{CC} =5.0V at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min VC=0 V VC=VC0	4.1 4.75 900 +0.4	4.2 5.0	55 -40 4.3 5.25 1300 370 300	dBc ohm dBc V V MA MA sec ppm	
Vcc (f _L -f)/f (f-f)/f (f _H -f)/f	n=1,2,3 V _{CC} =5.0V at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min VC=0 V VC=VC0	4.1 4.75 900 +0.4	4.2 5.0	55 -40 4.3 5.25 1300 370 300	ohm dBc V V mA mA sec	
Vcc (f _L -f)/f (f-f)/f (f _H -f)/f	n=1,2,3 V _{CC} =5.0V at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min VC=0 V VC=VC0	4.1 4.75 900 +0.4	4.2 5.0	-40 4.3 5.25 1300 370 300	V V MA MA Sec	
Vcc (f _L -f)/f (f-f)/f (f _H -f)/f	n=1,2,3 V _{CC} =5.0V at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min VC=0 V VC=VC0	4.75 900 +0.4	5.0	4.3 5.25 1300 370 300	V V MA MA sec	
Vcc (f _L -f)/f (f-f)/f (f _H -f)/f	V _{CC} =5.0V at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min Vc=0 V Vc=Vc0	4.75 900 +0.4	5.0	5.25 1300 370 300	V mA mA sec ppm	
Vcc (f _L -f)/f (f-f)/f (f _H -f)/f	at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min Vc=0 V Vc=Vc0	4.75 900 +0.4	5.0	5.25 1300 370 300	V mA mA sec ppm	
Vcc (f _L -f)/f (f-f)/f (f _H -f)/f	at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min Vc=0 V Vc=Vc0	4.75 900 +0.4	5.0	5.25 1300 370 300	V mA mA sec ppm	
(f _L -f)/f (f-f)/f (f _H -f)/f	at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min Vc=0 V Vc=Vc0	900		1300 370 300	mA mA sec	
(f-f)/f (f _H -f)/f	at +25°C, V _{CC} =5.0V to df/f=1e-8 at +25°C ref at 15min Vc=0 V Vc=Vc0	+0.4	0	370 300	mA sec	
(f-f)/f (f _H -f)/f	to df/f=1e-8 at +25°C ref at 15min Vc=0 V Vc=Vc0		0	300	sec ppm	
(f-f)/f (f _H -f)/f	+25°C ref at 15min Vc=0 V Vc=Vc0		0		ppm	
(f-f)/f (f _H -f)/f	Vc=Vc0		0	-0.4		
(f-f)/f (f _H -f)/f	Vc=Vc0		0	-0.4		
(f _H -f)/f			0		mqq	
	Vc=Vref					
Vc		Λ			ppm	
		0		4.3	V	
			11		kohm	
			91		ohm	
V_{C0}	disconnected Vc pin	1.8	2.1	2.4	V	
	-30°C to +70°C			±0.3	ppb	ref +25°C
$(f-f_0)/f_0$	$V_C = V_{C0}$	-0.1		+0.1	ppm	
	ref V _{CC} typ.			±0.2	ppb	
	5% change			±0.2	ppb	
	1s, 100 kHz BW		10		e-12	
	1Hz		-80		dBc/Hz	
	10Hz		-100		dBc/Hz	
	100Hz		-125		dBc/Hz	
	1KHz		-145		dBc/Hz	
	10KHz		-150		dBc/Hz	
	100KHz		-155		dBc/Hz	
				±0.5	ppb	
	operation			±0.05	ppm	
al condit	ions					
Per MII -S	TD-202, 30G, 11ms					
					enough drain	na stane
3 6 0 1	al condit 30°C to + 50°C to + 0.5 to 6.0 .0 to 6.0 .5 m/s m ermetica er MIL-S er MIL-S	-30°C to +70°C (f-f ₀)/f ₀	-30°C to +70°C	Column	V _{CO} disconnected Vc pin 1.8 2.1 2.4	V _{CO} disconnected Vc pin 1.8 2.1 2.4 V