

Dynamic Engineers Inc.

2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 TEL: 281-870-8822EMAIL:Sales@DynamicEngineers.com

C7LC&\$&\$7SFYj&

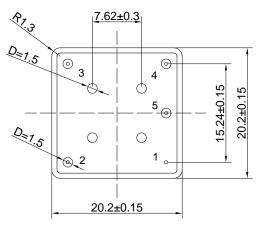
Low phase-noise high stability OCXO

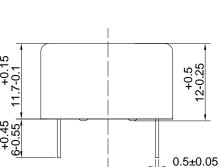
Features and Benefits

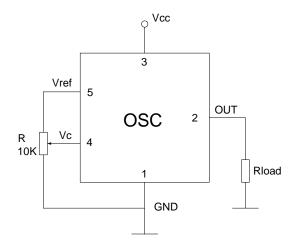
Very low phase noise up to -175 dBc/Hz, floor High temperature stability up to ±1 ppb at -40°C to +85°C Low aging up to ±0.2 ppb/day, 20 ppb/year Compact packaging Frequency range from 5 MHz to 150 MHz

Typical Applications

Stratum 3E clock systems Cellular Base Station Microwave Applications Radar Reference Instrumentation


Description


A new series of low phase-noise OCXO with high temperature stability for optimal performance.


Mechanical Drawing & Pin Connections

Drawing No:MD140069-5

3

Pin Connections

Pin	Signal
1	GND
2	RF Out
3	+V Supply
4	Electrical tuning
5	Reference voltage

Unit: mm 1mm=0.0394inch

Dynamic Engineers Inc.

2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 TEL: 281-870-8822EMAIL:Sales@DynamicEngineers.com

C7 LC &\$ &\$ 7 SF Yj &

Low phase-noise high stability OCXO

Specifications

General S	Specifications							
Parameter		Sym	Condition	Value			Unit	Note
		Sylli		Min.	Тур.	Max	Unit	
Frequency Range		F_0		5		150	MHz	Fundamental operation
RF Outpu	ıt							operation
				10			kOhm	For 10 MHz
	Load			10		15	pF	operational
HCMOS						10	Pi	frequency
(TTL)	H-level voltage	V_{H}	V _{cc} =5V or 12V	3.8			V	
option	L-level voltage	V _L	V _{cc} =3.3V	2.4		0.4	V	
	Duty Cycle	V L		45		55	%	
	Rise / Fall Time					10	ns	For 10 MHz
					. 0			operational
Sine-	Level	L		+6	+8	+10	dBm	frequency
wave	Load	R_L			50		Ohm	
option	Harmonics					-30	dBc	
Courter	level							
Spurious	cy Control*					-100	dBc	
rrequent	by Control							Positive tuning
Control V	/oltage Range	V_c	V _{cc} =5V or 12V	0		4.2	V	slope –
	3	- 0	V _{cc} =3.3V	0		2.8		(standard option)
Tuning Range				±0.5	±1		ppm	, , ,
Referenc	e voltage	V_{ref}	V _{cc} =5V or 12V	4.1	4.2	4.3	V	
		• Tel	V _{cc} =3.3V	2.7	2.8	2.9	,	
Frequenc	cy Stability		-40°C	l			l	<u> </u>
Vs. temp	erature		to+85°C,		±10		ppb	See chart below
vs. temp	Crature		ref 25°C		110		ppb	See chart below
Vs. supp	ly voltage		Ref V _{cc} typ.		±1		ppb	
Vs. accel	eration		Worst	±0.5		±1	ppb/G	
			direction	10.5		Δ1	рри/О	
Power Su	Power Supply							
Voltage		V_{CC}		4.75	5.0	5.25	V	3.3V, 12V optional
			Warm-up					optional
Dower C	anaumntian		state		3.2	3.5	W	
Power Consumption			Steady state,		1	1.2	W	
			+25°C					
Warm-up time		t_{up}	to $\Delta f/f = 1e-7$,			180	Sec	Ref to frequency
		~~	at +25°C 1 Hz	-106/-	-100/-			after 30 min
			10 Hz	-106/-	-100/-		1	
			100 Hz	-155/-130	-145/-120		1	For 10MHz/100MHz
SSB Phase Noise			1 kHz	-163/-155	-155/-150		dBc/Hz	operational
			10 kHz	-170/-170	-165/-165		1	frequency
			100 kHz	-172/-175	-168/-168			
Allan variance			1s	5	10		e-12	
	Per day			0.2	0.5		ppb	For 10 MHz
Aging	First year		After 30 days	20	50		ppb	See chart below
ee.	For 20		of operation	0.3	0.5		ppm	
	years						1. 1	

Dynamic Engineers Inc.

C7 LC &\$ &\$ 7 SF Yj &

2550 Gray Falls Dr., Suite#128, Houston, TX, 77077 TEL: 281-870-8822EMAIL:Sales@DynamicEngineers.com

Low phase-noise high stability OCXO

Environmental, mechanical conditions.		
Operating temperature range	See chart below	
Storage temperature range	-60°C to +90°C	
Humidity	Hermetically sealed	
Mechanical Shock	Per MIL-STD-202, 30G half sine pulse, 11ms	
Vibration	Per MIL-STD-202, 10G swept sine 10 to 500Hz (pins 0.5mm), 10G swept sine 0-2000Hz (pins 0.8mm)	
Soldering Conditions	Hand solder only – not reflow compatible 260°C 10s (on pins)	
Washing Conditions	Washing with water or alcohol based detergent allowed only with final enough drying stage	

^{*} No frequency control option – on customer requirement **Ordering Code**

OCXO2020C_Rev2	-	2	6	4	2	1	-	10 MHz
Group		1	2	3	4	5		

For example, OCXO2020C-26421-10MHz denotes the OCXO has the following specifications:

Temperature Range -10°C to +60°C

Stability Over Temperature ±10ppb

Aging per day / year 1.0ppb / 0.10 ppm

Supply Voltage 3.3V ±10%
Output HCMOS/TTL
Frequency 10MHz

1	Temperature Range
Code	Specification
1	0°C+50°C
2	-10°C+60°C
3	0°C+70°C
4	-20°C+70°C
5	-30°C+70°C
6	-40°C+85°C
7	-55°C+85°C
8	-40°C+125°C

2	Stability Over Temperature			
Code	Specification Available temperature range code			
		For 10 MHz	For 100 MHz	
1	±0.5 ppb	1, 2	-	
2	±1.0 ppb	1, 2, 3, 4, 5, 6	-	
3	±2.0 ppb	1, 2, 3, 4, 5, 6	-	
4	±3.0 ppb	1, 2, 3, 4, 5, 6, 7	-	
5	±5.0 ppb	1, 2, 3, 4, 5, 6, 7	1, 2, 3, 4, 5, 6	
6	±10.0 ppb	1, 2, 3, 4, 5, 6, 7	1, 2, 3, 4, 5, 6, 7	
7	±20.0 ppb	1, 2, 3, 4, 5, 6, 7, 8	1, 2, 3, 4, 5, 6, 7	
8	±50.0 ppb	1, 2, 3, 4, 5, 6, 7, 8	1, 2, 3, 4, 5, 6, 7	
9	±100.0 ppb	1, 2, 3, 4, 5, 6, 7, 8	1, 2, 3, 4, 5, 6, 7	

Aging per ppb/ppm	day/year,
Spec	cification
0.2/0.02	≤10MHz
0.3/0.03	≥ IUIVI⊓Z
0.5/0.05	≤20MHz
1.0/0.10	≤40MHz
1.5/0.15	≤50MHz
2.0/0.20	≤120MHz
3.0/0.30	≥IZUIVI⊓Z
5.0/0.50	≤150MHz
	ppb/ppm Spec 0.2/0.02 0.3/0.03 0.5/0.05 1.0/0.10 1.5/0.15 2.0/0.20 3.0/0.30

4	Supply voltage
Code	Specification
1	5V ±5%
2	3.3V ±5%
3	12V ±10%

5	Output
Code	Specification
1	HCMOS/TTL
2	Sine wave

Disclaimer: Not all option choices available across entire frequency range

Please contact Dynamic Engineers Inc. for further details.